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A Comparative Study and Evaluation on Several Typical Iterative
Methods for Bioluminescence Tomography
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Abstract Bioluminescence tomography (BLT) has recently emerged as a promising preclinical imaging modality.
Iterative methods based on sparse regularization play a critical role in solving the ill-posed BLT inverse problem.
Four kinds of typical iterative methods based on l1 regularization were briefly introduced and applied to reconstruct
the bioluminescent source location and intensity, which include interior-point methods, homotopy methods, first-
order methods, and augmented Lagrangian methods. Numerical experiments on a digital inhomogeneous mouse model
and in vivo experiments were conducted to evaluate the performance of these methods in terms of localization
accuracy, reconstructed intensity and power.
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几种典型迭代算法在生物发光断层成像中的
对比研究及评估

刘合娟 侯榆青 贺小伟* 蒲 鑫
西北大学信息科学与技术学院 , 陕西 西安 710127

摘要 生物发光断层成像是一种新型光学分子影像技术。基于稀疏正则化的迭代算法在解决重建中病态问题起着关

键的作用。将 4种典型的基于 l1正则化的迭代算法(内点法、同伦算法、一阶方法和拉格朗日算法)应用于重建过程中，

分别进行数学推导，并从重建精度和重建速度方面进行了实验对比和性能评估。实验结果表明尽管 4种方法均能较好

地重建出光源位置，但时间代价和重建能量大小上存在差异，据此结果为不同情况下重建算法的选取提出建议。
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1 Introduction
Bioluminescence tomography (BLT) is a new optical molecular imaging technique with the features of

high detection sensitivity, relatively low cost and easy use, etc., and it has recently emerged as a promis⁃
ing tool in oncology, metastasis monitoring and drug development[1-3].

As an important modality in optical molecular imaging, BLT problem involves forward and inverse
problem. The forward problem investigates the light propagation in biological tissues, which is the basis and
prerequisite for the inverse problem. The inverse problem aims to reconstruct internal bioluminescent source
from the photon density measured on the tissue surface. The light propagation in biological tissues is
influenced by various factors such as scattering and absorption[4], which makes the intensity on the surface
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greatly reduced and brings difficulty to locate the bioluminescent source in BLT.
Two challenging problems facing the reconstruction algorithm are the severe ill-posedness of BLT inverse

problem, and the large-scale numerical problem involved in tomographic imaging. Wang et al.[5] combine
anatomical structure and optical parameters as priori information to alleviate the ill- posedness of the
problem. Cong et al.[6] adopt a priori permissible source region-based reconstruction method to obtain stable
reconstruction. Lv et al.[7] develop a multi- level adaptive finite element algorithm for BLT, which helps
improve source localization and quantification. Jiang et al.[8] implement the source reconstruction from part
of the measurement data by expectation maximization (EM) method and constraint Landweber iterative

method. In view of the spectral characteristics of the underlying bioluminescence source, Chaudhari et al.[9]
develop multispectral and hyperspectral methods, which have improved the reconstruction accuracy and
detecting depth. As shown in reference [10], reconstruction algorithm is the key of successful BLT application.

Regularization is a common technique adopted in most reconstruction algorithms to deal with the ill-
posedness of BLT. As a typical l2 regularization method, Tikhonov regularization is widely used in BLT
reconstruction[11]. However, due to the inherent characteristic of Tikhonov regularization, these methods
usually produce smooth solutions which will result in the loss of high frequency parts and lower accuracy
of localization. In BLT applications, bioluminescent probes and gene reporters are associated with target
specific biological tissues, which are typically sparse. The sparsity- seeking property of l1 norm based
optimization has been shown in many signal processing areas. In BLT, l1 regularization based reconstruction
algorithms tend to gain high quality reconstruction images from insufficient boundary measurement.
Therefore, l1 regularization has attracted much attention in BLT reconstruction. A number of algorithms based
on l1 regularization have recently been proposed for 3D bioluminescence reconstruction[12-15].

In this research, four kinds of commonly used iterative regularization methods are investigated and applied
to reconstruct the bioluminescent source location and intensity. They are interior-point methods (PDIPA
and L1LS)[16], homotopy algorithm (homotopy)[17], first-order methods (FISTA)[18], and augmented Lagrangian
algorithm (PALM and its dual algorithm DALM)[19]. The purpose of this study is to investigate the performance
of these iterative regularization methods in BLT.

2 Methods
2.1 Reconstruction model for BLT

The diffusion approximation model of radiative transfer equation (RTE) is applied to reconstruct the
bioluminescent source location and intensity[20]. By solving the diffusion equations with finite element
method, we can establish the linear relationship between the boundary measurement b ∈ Rm and the in⁃
ternal source distribution x ∈ Rn [21].

Ax = b , (1)
where A ∈ Rm × n (m ≪ n) is a weighting matrix, relating the measurement to the unknowns. However, the

unknown source distribution cannot be obtained by direct solving of Eq. (1) due to the high ill-posedness
of BLT. Based on priori information of source distribution, the BLT problem is converted to the following
l1-norm minimization problem or an equivalent l1-norm regularized minimization problem.

min
x
 x 1 s.t. Ax = b , (2)

or

F(x) = min
x

1
2  Ax - b

2
2 + λ x 1 , (3)

where  x 1 is an sparse-inducing regularizer to stable the solution λ is the regularizaton parameter. By

solving Eq. (3) with an appropriate optimization method, we can achieve accurate approximation for the
source distribution from limited boundary measurement.
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2.2 Iterative reconstruction algorithms
We consider four groups of iterative reconstruction algorithms to solve the Eq. (3).

2.2.1 Interior-point methods
Primal-dual interior-point algorithm (PDIPA) is considered as a classical approach to solve l1-norm

minimization problems. Considering the actual intensity of bioluminescence source is nonnegative, the
Eq. (3) can be rewritten as a linear programming (LP):

primal (P) dual (D)

min
x

1T x ;
s.t. Ax = b

x ≥ 0
,

max
y, z b

T y.
s.t. A

T y + z = 1
z≥ 0

. (4)

The basic idea of primal-dual interior-point method is to formulate the inequality constrained Eq. (4)
as an equality constrained problem, which can be solved by the barrier method. As a classical method,
PDIPA has been applied in the BLT[15]. However, the complexity of PDIPA is dominated by the Newton
update step, which is computationally expensive for large l1- min problems. Hence, an improved
interior-point method can be used to approximate its solution, which is the truncated Newton interior-
point method (TNIPM), also known as L1LS[22].

L1LS solves an optimization problem of the Eq. (3). It transforms the objective function of Eq. (2) into
a quadratic programming with inequality constraints,

min 1
2  Ax - b

2
2 + λ∑i = 1

n vi ，s.t. - vi ≤ xi ≤ vi, i = 1,2, ...,n . (5)

Then define a logarithmic barrier for the bound constraints -vi ≤ xi ≤ vi in Eq. (5):

Φ ( )x,v = -∑log( )vi + xi -∑
i

log( )vi - xi . (6)

The central path consists of the unique minimized variable [ ]x*( )t ,v*( )t of the convex function

F ( )x,v ≡ t
æ
è
ç

ö
ø
÷ Ax - b

2
2 + λ∑

i = 1

n

vi +Φ ( )x,v , (7)

where the parameter t changes from 0 to ∞. Different from primal barrier method, the search direction is
computed by a truncated Newton method[23].
2.2.2 Homotopy method

The basic idea of the homotopy algorithm is as follows: in solving the basic pursuit problem of noisy
background in Eq. (3), along with the decrease of λ , the objective function F ( )x undergoes homotopy from

the l2 constraint to the l1 objective, i.e. when λ→ ∞ , x*
λ = 0 ; when λ→ 0 ，x*

λ converges to the solution of

Eq. (1). Taking the subdifferential of  x 1 into account, it can be defined as follows:

w( )x =Δ ∂ x 1 =
ì
í
î
w ∈ Rn: ü

ý
þ

wi = sgn( )xi , xi ≠ 0
wi ∈ [ ]-1,1 , xi = 0 . (8)

The homotopy algorithm runs iteratively, initial x
( )0 = 0 . In each iteration of a non-zero λ ，0 ∈ ∂F ( )x

can be used to make c( )x = A
T
b - A

T
Ax ∈ λw( )x .

According to the definition in Eq. (8), in the first k iteration, we maintain a sparse support set

I = { }i: || ck

i (x) = λ . The algorithm is then only to calculate the update direction and step for the non- zero

coefficients of x
( )k which is identified by I. Since the update only involves the non-zero coefficients in I,

and when x is sparse it can be very small, the computational cost of homotopy algorithm can be greatly
improved from the interior-point methods.
2.2.3 First-order methods

In the optimization, first- order methods refer to those algorithms which use the structure of the

3
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subdifferential of the  ∙ 1 . There are many first-order methods in recent years, such as proximal-point

methods, parallel coordinate descent, approximate message passing. Here we consider a typical algorithm,
namely fast iterative soft-thresholding algorithm (FISTA), which has a significantly better convergence rate.

First we define a proximal operator of a convex function g of x ∈ Rn as

fproxg (x) = arg min
u

g(u) + 1
2  u - x

2
2 , (9)

where g(x) = α x 1 , and the proximal operator can turn into closed-form expression which is called the

soft-thresholding or shrinkage operator:

fsoft (x,α)i = fsign (xi)∙ max{ }|| xi - α, 0 , i = 1,2,…,n . (10)

The key idea behind FISTA is that, instead of forming a quadratic approximation of Eq. (3) at xk at

the k-th iteration, it uses a more carefully chosen sequence yk , the details are described as follows:

xk = fsoft
é

ë
ê

ù

û
úyk - 1

Lf

∇f (yk), λLf

, tk + 1 = 1 + 1 + 4t2k
2 , yk + 1 = xk + tk - 1

tk + 1
(xk - xk - 1) , (11)

where y1 = x0 and t1 = 1 . Define that g(x) =  x 1 , and f (x) = 1
2  Ax - b

2
2 . ∇f (x) = A

T (Ax - b) is Lipschitz

continuous with Lipschitz constant L f =  A 24 . Thus, we have a slightly different problem whose solution

gets closer to the solution set of Eq. (1) as λ→ 0 .
2.2.4 Augmented Lagrangian method (ALM)

Augmented Lagrangian method (ALM) is a special class of first-order method, which uses a Lagrange
multiplier in l1-min problems. Applying ALM to the primal problems, we can get the complete ALM algorithm
which is the primal ALM (PALM) for solving the primal l1-min problem, while DALM is the method that
applies ALM to the dual problems. Because the solving steps are different, the computational time is also
different for PALM and DALM. Generally the DALM is the preferred method. Assume p( )x =  x 1 , and

h( )x = b - Ax . Because p and h are continuous convex functions of x, we can assume that Eq. (1) has a unique

global minimum. Therefore, for any ξ > 0 , we modify cost function and Eq. (1) has the same optimal solution

x* accompanied with additional penalty term,

min
x

p( )x + ξ
2  h( )x

2
2

s.t. h( )x = 0 . (12)

Although other penalty functions can also be used, secondary is preferred because of its smoothness.
Lagrangian operator of the Eq. (11) is given by

Lξ ( )x,θ = p( )x + ξ
2  h( )x

2
2
+ θTh( )x , (13)

where θ ∈ ℜm is a vector of Lagrange multipliers, Lξ ( )., . is called the augmented Lagrange multiplier of

Eq. (1)[24]. There exists ξ* ∈ ℜm (which is not the only one) and ξ* ∈ ℜ to make

x* = arg min Lξ ( )x,θ* ,∀ξ > ξ* . (14)

Therefore, by minimizing augmented Lagrangian function operator Lξ ( )x,θ , we can find the optimal

solution of Eq. (1). Using multiplier method, Eq. (14) can be solved by constructing an iteration,

ì
í
î

xk + 1 = arg min x L ξk
( )x,θk

θk + 1 = θk + ξkh( )xk + 1
. (15)

where { }ξk is a predefined sequence.

While we used the augmented Lagrangian principle in the dual problem of Eq. (1), it can be represented
as follows:

max bT y s.t. A
T y ∈ B∞

1 , B∞
1 = { }x ∈ Rn: x ∞ ≤ 1 . (16)

The corresponding Lagrangian function is given by the following equation:
4
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min y, z - b
T y - xT( )z - A

T y + β
2  z - A

T y
2
2
, s.t. z ∈ B∞

1 . (17)

The problem about y，x and z is difficult, so we take alternate strategy, while in the process of hidden
variable, iterative minimization of the cost function with another variable. Given ( )xk ,yk , the minimizer

zk + 1 which respects to z is given by

zk + 1 = p
B∞
1
( )A

T yk + xk /β , (18)

where p
B∞
1
represents the projective operator to B∞

1 . Given ( )xk , zk + 1 , minimization of y is a least squares

problem. Its solution is obtained by solving the equation:
βAAT y = βAzi + 1 - ( )Axi - b . (19)

Assume that AA
T is invertible, Eq. (19) can be solved directly.

3 Experiments and results
3.1 Comparison of convergence rate

We compared the time cost of the four methods for solving the problem in Eq. (1). We constructed a
detection matrix A with size of m × n( )m < n , and insured that every input matrix was independent and with

identical Gaussian distribution. The observables b can be calculated from the X, x0 is a sparse vector, its

selection is random. Its non-zero input is independent and identically distributed, uniformly distributed in
the range [-10, 10]. Assume d is the sparseness of x0 , i.e.  x0 0 = d . Providing m=800，for different n and d,

we estimated the relative error and calculating time of x0 . Fig. 1 shows the average relative error after 5

iterations.

Fig.1 Time cost and calculation accuracy of each algorithm

From Fig. 1, we can find that DALM is the fastest algorithm in all the cases. ALM and homotopy algorithm

can achieve near-machine precision [ ]rk( )x ≤ 10-10 in solving the problem. We find that the homotopy

algorithm is very sensitive to the sparseness d. When the number of unknowns increases, the speed of all
these algorithms will slow down, especially for homotopy. However, under the same sparseness, homotopy
is not sensitive to unknowns n. PDIPA is the most sensitive algorithm to the size of the problem, and
produces the largest relative error in all cases; hence it is not suitable for large scale data problems. Overall,
compared to the primal algorithms (PDIPA, L1LS, FISTA and PALM), the dual algorithm DALM is less
sensitive to n.
3.2 Digital mouse experiment

In order to assess the performance of these typical iterative algorithms in bioluminescence tomography,
a digital mouse model is used for testing, as shown in Fig. 2[13]. Five major organs of the mouse are considered,
including heart, lungs, liver, kidneys and stomach. The optical parameters are given in table 1[6]. In the
experiment, the digital mouse model was discretized to a finite mesh with 112795 elements and 21277 nodes.
The mouse model was implanted with a cylindrical light source with 0.5 mm radius and 1.0 mm height. The
true light source was located in the liver, and its coordinates were (18.1 mm, 6.3 mm, 15.4 mm). The total
power and power density were initialized as 0.785 nW and 1 nW/mm3 respectively.

5
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Fig.2 Digital mouse model. (a) 3D mouse model with a light source in the liver; (b) 3D mesh

Table 1 Optical parameters for the non-homogeneous phantom

Organ

Heart

Lung

Liver

Kidney

Stomach

μa /mm-1

0.0104

0.0203

0.0176

0.0380

0.0070

μ s /mm-1

0.99

1.95

0.65

2.02

1.36

The above four kinds of algorithms are performed to recover the BLT source and the corresponding
results are shown in Fig. 3. Table 2 presents the specific quantitative results.

Fig.3 Reconstruction results of each algorithm

From table 2, we can find that the reconstructed power by PDIPA, homotopy and L1LS is higher than
that of others, while PALM, DALM and homotopy have lower location error (LE). In general, homotopy
algorithm makes good performance in all the evaluated indexes.

6
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Table 2 Contrast of the digital mouse experimental data

Iterative method

PDIPA

L1LS

Homotopy

FISTA

PALM

DALM

Power density /(nW/mm3)

0.0390

0.0106

0.0115

0.0051

0.0075

0.0094

Total power /nW

0.4106

0.1120

0.1215

0.0533

0.0786

0.0993

Reconstruction location /mm

(17.31 7.79 12.42)

(18.96 7.63 15.54)

(17.85 6.22 14.85)

(16.97 7.89 15.81)

(17.93 6.22 14.86)

(17.92 6.22 14.94)

LE /mm

3.51

1.59

0.61

1.99

0.57

0.50

3.3 In vivo experiment
The in vivo experiments were presented here to compare the performance of various methods for mouse

applications. A catheter containing luminescent liquid was implanted into a living mouse as the test source.
The mouse torso section was scanned using micro-CT (computer tomography) and segmented into major
anatomical components, including muscle, heart, liver, lungs and kidneys, as shown in Fig. 4. The optical
parameters of each organ are listed in table 3[25]. The center coordinates of the light source were (21 mm，

27.4 mm，9.4 mm). The model was discretized into 3170 nodes and 15086 tetrahedral elements. The
reconstruction results are shown in Fig. 5, and table 4 presents the specific quantitative results.

Fig.4 Torso model of the real mouse with one source

Table 3 Optical parameters for the mouse organs

Organ

Heart

Lung

Liver

Kidney

Muscle

μa /mm-1

0.14

0.46

0.82

0.15

0.01

μ s /mm-1

1.08

2.27

0.74

2.53

1.26

Table 4 Contrast of the in vivo experimental data

Iterative method
PDIPA
L1LS

Homotopy
FISTA
PALM
DALM

Power density /(nW/mm3)
0.5100
0.1351
0.1592
0.1065
0.0976
0.1592

Reconstruction location /mm
(18.35 26.44 11.55)
(19.98 29.40 10.87)
(19.89 28.91 10.75)
(18.60 27.13 11.86)
(20.20 30.09 10.95)
(19.90 28.91 10.75)

LE /mm
3.552
2.686
2.313
3.447
3.204
2.309

From the table 4 and Fig. 5, we find that all the reconstruction results of the real mouse experiments
are not better than the digital mouse experiments, but the overall trend is consistent. For example, DALM
shows the best performance, and the performance of PDIPA is the worst. Therefore, the LE of the individual
method increases greatly as the PALM, the possible reason is that the method is not robust to the noise in
the in vivo experiments.

7
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Fig.5 Reconstruction results of each algorithm in the in vivo experiment

4 Conclusion
We compare the performance of four kinds of typical iterative algorithms in BLT reconstruction by digital

mouse experiments and in vivo experiments. The experimental results show that homotopy algorithm and
Lagrange algorithm perform better in location accuracy. Although L1LS method is stable and suitable for large
scale problem, its performance in reconstruction is not good as other algorithms. In terms of reconstruction
quality, Lagrange algorithms (PALM and DALM) have relatively low power density and total power of
reconstruction, but have better location accuracy. In general, homotopy method makes better performance
in all indexes. Taking the sensitive analysis into account, Lagrange algorithms and homotopy algorithm are
more suitable for solving the sparse BLT problem. Therefore, according to the characteristics of the
algorithms in BLT reconstruction, if there is fewer measurement data in the boundary, we can use the
augmented Lagrange method, which has fast computing speed and high calculation accuracy. If there is a
large amount of data, we can use the homotopy method, it can guarantee both of solving speed and precision.
If there is much boundary survey information, the data quantity is relatively large and the sparse degree is
low, we can use interior-point methods. Due to BLT is an ill-posed problem and each method has its
particular characteristics, we will pay attention to the combination of various algorithms for better
performance on BLT in the future work.
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